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A B S T R A C T   

The solid-liquid distribution coefficient (Kd) is a key input parameter in radioecological models. However, its 
large variability hampers its usefulness in modelling transport processes as well as its accuracy in representing 
soil-radionuclide interactions. For the specific case of radiocaesium, the analyses of a Cs Kd soil dataset (769 
entries) showed that values varied over a five order of magnitude range, and the resulting Cs Kd best estimate 
(calculated as a geometric mean = 2.5 × 103 L kg− 1) lacked reliability and representativity. Grouping data and 
creation of partial datasets based on the experimental approach (short-term (< ~1 yr) vs. long-term experiments 
(> ~1 yr)) and soil factors affecting Cs interaction (i.e., the ratio of the radiocaesium interception potential (RIP) 
to the potassium content in soil solution (Kss); organic matter content (OM) and soil texture) succeeded in 
reducing variability a few orders of magnitude, with Cs Kd best estimates also differing by one-two orders of 
magnitude depending on the type of soil and experimental approach. The statistical comparison of the Cs Kd best 
estimates and related cumulative distribution functions of the partial datasets revealed a relevant effect of the 
sorption dynamics on Cs Kd values (with long-term values systematically higher than short-term ones), and that 
the RIP/Kss ratio was an excellent predictor of Cs Kd for short-term scenarios, whereas the RIP parameter could be 
predicted on the basis of texture information. The OM threshold to distinguish between OM threshold to 
distinguish between Mineral and Organic soils subclasses, regarding Cs interaction was determined to be 50% 
and 90% OM for short- and long-term scenarios, respectively. It was then recommended to select the Cs Kd input 
data depending on the soils and scenarios to be assessed (e.g., short- vs. long-term; OM %) to improve the 
reliability and decrease the uncertainty of the radioecological models.   

1. Introduction 

Radiocaesium (Cs) interaction with soils and other materials like 
clays has been thoroughly studied in the last couple decades, which has 
led to a strong understanding of the sorption mechanisms governing Cs 
sorption in soils and to the identification of related soil physicochemical 
properties (Comans et al., 1989; Cremers et al., 1990; Vidal et al., 1995; 
Rigol et al., 1998; Okumura et al., 2018). Cs speciation in solution is very 
simple. In the natural environment, the predominant Cs species in so
lution are hydrolysed cations, and thus Cs-soil interaction is based on 
cation exchange reactions involving two main types of sorption sites 
with contrasting affinity for Cs and selectivity for monovalent and 
divalent cations. In those soils with high organic matter content and 

absence of 2:1 phyllosilicates, Cs sorption is mainly caused by the 
interaction with regular exchange sites (RES) (Rigol et al., 1998, 2002). 
RES are present in organic matter and clay minerals as a result of 
deprotonation of certain functional groups and isomorphic sub
stitutions, respectively; and they can be roughly estimated with soil 
cation exchange capacity (CEC). Since RES have low affinity and low 
selectivity coefficients for monovalent cations (e.g., Cs/K or Cs/NH4

+), Cs 
sorption in RES is considered as a weak and non-specific interaction 
(Vidal et al., 1995) that can be highly inhibited by the presence in so
lution of other monovalent cations and, specially, divalent cations pre
senting a higher electrostatic affinity, due to sorption competition 
processes (Comans et al., 1989; Cremers et al., 1990). When only trace 
levels of 2:1 phyllosilicates are present in soils, Cs sorption becomes 
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controlled by its interaction with sorption sites located in the interlayer 
space of these minerals, which include illite, vermiculite or smectite and, 
particularly, in the frayed edge sites (FES). FES have an extremely 
high-affinity for monovalent cations (described in below) (Cremers 
et al., 1988; Okumura et al., 2018). In this context, a prediction of the Cs 
Kd may be attempted on the basis of the following equation (Gil-García 
et al., 2011):  

in which RIPK is the Radiocaesium Interception Potential (RIP) obtained 
by measuring the amount of caesium sorbed in a medium containing 
100 mmol L− 1 of Ca and 0.5 mmol L− 1 of K (Wauters et al., 1996), Kss, 
NH4,ss and Nass refer to K, NH4

+ and Na concentrations in soil solution, 
Kexch, NH4,exch and Naexch stand for K, NH4

+ and Na concentrations in the 
exchangeable complex, and KC

FES is the monovalent trace selectivity 
coefficients at FES. KC

FES (Na/K) takes a value around 0.02, whereas KC
FES 

(NH4/K) roughly varies within a 4–8 range. This equation can be 
simplified by only considering the RIPK, that accounts for the soil ca
pacity to specifically sorb Cs (Sweeck et al., 1990; Wauters et al., 1996), 
and the K concentration in the soil solution, as key soil properties gov
erning Cs Kd values, specifically when sorption at RES can be dis
regarded, as illustrated in Equation (2) (Gil-García et al., 2011):  

Kd
FES = RIPK / Kss                                                                           (2) 

The specific Cs sorption, Kd
FES, is crucial for the understanding the 

long-term Cs-soil interaction, which is the result of complex Cs-clays 
multiple reactions, especially with illite, montmorillonite and morden
ite clays (de Koning and Comans, 2004; Ohnuki and Kozai, 2013; Dur
rant et al., 2018; Okumura et al., 2018). Sorbed Cs species undergo a 
progressive dehydration reaction with time that causes the so-called clay 
interlayer spacing collapse and implies that the dehydrated sorbed Cs 
may become trapped in the clay bulk (Wampler et al., 2012; Fuller et al., 
2015). Because of this, Cs sorption to FES is a slow dynamic process, 
resulting in the fraction of sorbed Cs that virtually is irreversibly sorbed 
and no longer participates in the partition between the solid and liquid 
phases to increase with time. This process is known as sorption aging 
and enhances the fraction of irreversibly bound Cs (Absalom et al., 1995; 
Roig et al., 2007; Wang and Staunton, 2010; Wampler et al., 2012 
Söderlund et al., 2016). Therefore, important considerations affecting 
the risk posed by Cs contaminated soils is whether there has been a short 
or long Cs contact time with the soil and whether 2:1 clays are present. 

The Kd parameter is used in many radioecological risk assessment 
models for multiple purposes, including estimating radionuclide trans
port, plant-soil partitioning, and desorption from a source term (Krupka 
et al., 1999; Almahayni et al., 2019). Kd values are used to determine 
radionuclide partitioning between the dissolved and solid phases and 
when combined with the bulk density and porosity of the soil it can be 
used to calculate the retardation factor (Krupka et al., 1999), which in 
turn can be used to estimate the mobile radionuclide fraction (Krupka 
et al., 1999). In an identical calculation but with a different intent, the 
Kd can be used to estimate the release of radionuclides from a contam
inated source. Kd values may also be used to estimate the plant to soil 
concentration ratio based on the assumption that plants take up pri
marily radionuclides from the porewater solution phase, as estimated by 
the denominator of the Kd. Users can estimate external doses to organ
isms by inputting either soil or water radionuclide activity concentra
tions, and then the model estimates the associated soil or water 
radionuclide activity concentration through the use of Kd values 

(Beaugelin-Seiller et al., 2002; Brown et al., 2016). Kd values can be used 
to estimate leaching of a radionuclide from a surface soil to an under
lying zone (e.g., vadose zone or aquifer) by accounting for both plant 
uptake (plant:soil partitioning) and sorption during transport (retarda
tion factor). Finally, in semi-mechanistic models focusing in Cs, specific 
parameters such as RIP can also be used to internally predict Cs Kd 
values (Equation (2)) (Absalom et al., 2001; Tarsitano et al., 2011). In 

each of these uses of the Kd parameter, data can be entered as a single 
value or as a probability density function (Simon-Cornu et al., 2015). 

This work is the second in an initial series of three publications 
(Ramírez-Guinart et al., 2020, 2020b) aiming at deriving sorption data 
suitable for risk assessment from soil Kd datasets, as well as to develop a 
strategy to reduce and describe Kd variability based on probabilistic 
models, including the construction of distribution functions to statisti
cally describe the Kd values of a target radionuclide (RN), in this case 
radiocaesium. As explained in part 1 (Ramírez-Guinart et al., 2020), the 
International Atomic Energy Agency (IAEA) Kd dataset described in 
Technical Reports Series Number 472 (TRS-472; IAEA, 2010) was the 
starting point of the work. Under the auspices of the IAEA-MODARIA 
(Modelling and Data for Radiological Impact Assessment) project, the 
TRS-472 dataset was updated and critically reviewed following agreed 
acceptance criteria by the MODARIA Working Group 4, including: 1) 
rejecting any Kd value not directly quantified as the ratio between 
concentrations of the target element measured in a liquid and a solid 
phase (i.e., reject data from parametric equations, mass-transport ex
periments, or Kd reference values were excluded); 2) rejecting Kd values 
created by pooling values originating from varying non-relevant oper
ational or soil variables; 3) excluding values obtained from experiments 
not representative for environmental conditions (such as extremely low 
or high pH); 4) accepting data from stable isotopes obtained at the 
lowest concentration range; and 5) rejecting data from pure (soil) 
mineral phases, such as clay minerals or metal (hydro)oxides. The 
resulting critically reviewed dataset contains >7000 soil Kd entries for 
83 elements (Ramírez-Guinart et al., 2020), of which 769 entries 
describe soil Cs Kd values. 

Previous work has derived Cs Kd best estimate values from large 
datasets, as well from partial datasets created based on the RIP param
eter and texture and organic matter content (Gil-García et al., 2009). The 
objectives of this study are to evaluate and quantify new potential 
sources of variability of Cs Kd values. More specifically, the objectives of 
this study were: 1) to evaluate if Cs contact time with soil (i.e., 
short-term vs. long-term; < ~1 yr and > ~1 yr, respectively) affects Cs 
Kd values and therefore be a source for Cs Kd variability; 2) to evaluate 
several groupings aligned with various soil properties, including 
RIP/Kss, and soil OM + Texture; 3) because RIP is not commonly 
measured, evaluate whether it can be estimated by common soil texture 
properties; and 4) to determine the organic matter (OM) content 
threshold to optimally distinguish between mineral and organic soils to 
permit reducing Cs Kd uncertainty. The intent of this study was not only 
to identify significant differences between these various soil categories, 
but also to improve present approaches to selecting Cs Kd values to 
minimize uncertainty, thereby improving input data of radioecological 
models. 

Kd =KFES
d + KRES

d =
RIPK

Kss + KFES
C (NH4/K)⋅NH4,ss + KFES

C (Na/K)⋅Nass
+

Kexch + NH4,exch + Naexch

Kss + NH4,ss + Nass
(1)   
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2. Data collection and treatment 

2.1. Current status of the Cs Kd compilation 

The updated MODARIA Cs dataset contains 769 entries with related 
soil characteristics and details regarding the experimental approach 
(Ramírez-Guinart et al., 2020). With respect to the TRS-472 compila
tion, a significant set of data gathered from desorption experiments of 
indigenous Cs has been integrated because of the changes introduced in 
data acceptance criteria (POSIVA, 2014; SKB, 2014). The soil Cs Kd 
overall dataset contained values ranging within up to five orders of 
magnitude (Min-Max range of 4✕100 – 4.5✕105 L kg− 1). The large Cs Kd 
variability of the dataset denotes the presence of data from soils with 
contrasting key properties (e.g., RIP, OM, clay content, K in soil solution, 
etc.) and from different experimental approaches. 

Besides fields within the dataset related to the sources of informa
tion, radioisotopes, soil characteristics and ancillary information (such 
as pH, organic matter content, cationic exchange capacity (CEC), clay 
and sand contents referred to mineral matter; exchangeable K and NH4; 
concentration of K and NH4 in soil solution; and RIP), additional fields 
were included related to the experimental approach (either short or 
long-term experiments). 

2.2. Soil factors and developed criteria to group Cs Kd data 

Cs Kd values have to be grouped according to soil factors specific to 
the Cs sorption mechanisms. As discussed above, the Cs Kd

FES, which is 
equal to the RIP/Kss (Eq. (2)), was used as a criterion for reducing Cs Kd 
variability (Gil-García et al., 2009). Four RIP/Kss ranges were created: 
RIP/Kss < 102; 102 ≤ RIP/Kss < 103; 103 ≤ RIP/Kss < 104; and RIP/Kss >

104, as previously agreed in past analyses (IAEA, 2009). 
Ideally the soil factor used to categorize soils for predicting Cs Kd 

values would be based directly on the concentration of the 2:1 clay 
minerals that provide FES, rather than RIP. However, such measure
ments are costly (involving multiple X-ray diffraction analyses of a 
single soil sample) and are typically not conducted in routine soil ana
lyses. Consequently, few mineralogy characterisation data are available 
for soils, thus making any mineralogy-based grouping criteria of limited 
practical use. Thus, a Kd grouping criterion based on the soil texture and 
OM content, the so-called OM + Texture criterion previously defined 
and agreed upon (IAEA, 2010), was also applied to group Cs Kd data. In 
short, a Cs Kd value was included in the organic group if the soil had an 
OM content ≥ 20%, whereas it was included in the Mineral group if OM 
was lower than 20%. Secondly, the Kd data contained in the Mineral 
group were split in three textural groups (Sand, Loam, and Clay) when 
textural data were available. Based on percentage of the mineral frac
tion, the Sand group was defined by a sand fraction ≥ 65%, and a clay 
fraction < 18%; Clay group: clay fraction > 35%; and Loam group, rest 
of cases. The suitability of the OM + Texture Kd grouping criterion to 
propose soil-type Cs Kd data lies on the fact that even though the OM +
Texture criterion is not based on the fundamental description of the 
underlying sorption processes of Cs in soils, it partially captures some of 
the soil properties that can play a key role in the Cs-soil interaction. 

The OM threshold traditionally used to discern between an organic 
and a mineral soil may not be the most appropriate for Cs Kd. A 20% OM 
threshold to distinguish between soils with a high Cs sorption capacity 
due to the presence of the mineral fraction and those with a low sorption 
capacity due to the absence of FES could not be appropriate, as a minor 
content of mineral fraction can govern Cs sorption even in organic soils 
such as histosols (Vidal et al., 1995; Rigol et al., 1998). Therefore, the 
effect of varying the OM concentration threshold was also analysed to 
redefine the OM + Texture criterion. 

2.3. Analysis of the influence of the experimental approach on Cs Kd data 
variability 

As with other papers in this series, the influence of the experimental 
approach was simultaneously evaluated along with relevant soil factors 
for reducing Cs Kd variability. From the three experimental approach 
categories (short-term sorption (ST-S), short-term desorption (ST-D), 
and long-term desorption (LT-D)) (Ramírez-Guinart et al., 2020), the 
greatest number of Kd entries were in the “short-term sorption” category 
(that is, Cs Kd derived from applying a sorption batch test based on 
putting in contact for short times a non-contaminated soil with a solu
tion spiked with radiocaesium or with low concentrations of stable Cs), 
and “long-term desorption” (that is, Kd of anthropogenic Cs derived from 
applying an extraction test to long-term contaminated solid materials 
with radiocaesium, or Kd derived from indigenous Cs from performing 
an extraction test when the total content of the indigenous Cs at the solid 
matrix is quantified). There were no entries that could be considered as 
“short-term desorption data” (Cs Kd derived from anthropogenic radio
caesium from applying an extraction batch test to soils recently 
contaminated with radiocaesium). Therefore, according to the entries 
available for the experimental approach categories, only the differences 
between the overall short-term versus long-term datasets were finally 
examined. 

The data treatment was based on group mean centering (GMC) to 
minimize the effect of soil factors on the interaction terms and to 
examine better the individual role of the experimental approaches on Cs 
Kd variability (Bell et al., 2018). Regarding soil factors and based on the 
previous experience of similar grouping exercises (Gil-García et al., 
2009), these analyses could be carried out by either considering the 
RIP/Kss or the OM + Texture criteria. For the GMC treatment, the use of 
the RIP/Kss factor was dismissed as the RIP concept accounts for 
short-term and reversible sorption scenario. Therefore, the GMC was 
only addressed to minimize the effect of OM and texture on elucidating 
the role of the experimental approach factor. Firstly, the overall Cs 
dataset was log-transformed, the log Cs Kd data was then grouped ac
cording to the OM + Texture criterion. The arithmetic mean (AM) of the 
log Cs Kd values of each soil-type group was calculated and each log Cs 
Kd value within a given group was corrected by subtracting the AM log 
Cs Kd value of the respective soil-type group. Subsequently, the 
GMC-corrected log Cs Kd datasets were divided according to the type of 
the experimental approach and statistical tests (Fisher’s least significant 
differences (FLSD) test for multiple means; 95% confidence level; Stat
Graphics 18) were performed to check whether the Cs Kd means for each 
experimental approach significantly differed. 

2.4. Construction of cumulative distribution functions to describe Cs Kd 
variability 

Cumulative Distribution Functions (CDF) of Cs Kd data were con
structed to describe the population and variability of each groupings’ 
datasets. Since the Kd parameter is a ratio of concentrations, Kd data are 
expected to follow a lognormal distribution (Sheppard, 2011). Thus, 
lognormal was the first function distribution of the Cs Kd data tested. For 
the construction of CDFs, Cs Kd data were log-transformed and the 
presence of possible outlier values in the datasets was examined by 
performing an exploratory analysis based on box-and-whisker plots. The 
log Cs Kd data within every dataset were sorted by increasing value and 
an empirical frequency (fexp,i) equal to 1/N (where N is the total number 
of Cs Kd entries in the respective dataset) was assigned to each entry. 
Experimental group cumulative frequency distributions were con
structed by assigning to each sorted log Cs Kd value their corresponding 
cumulative frequency (Fexp,i), i.e., the sum of the preceding frequencies 
(F(Kd,j) =

∑j
i=0f(Kd,i)). The Kolmogorov-Smirnov test was then applied 

to ascertain whether the underlying frequency distribution in each Cs Kd 
dataset was significantly different from the lognormal distribution. As 
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expected, it was confirmed that overall and partial Cs Kd datasets fol
lowed a lognormal distribution. Consequently, the experimental cumu
lative frequency distributions constructed with the log Cs Kd data were 
fitted to the theoretical normal CDF equation, and the related geometric 
mean (GM) and percentile ranges were derived. Further details can be 
found elsewhere (Ramírez-Guinart et al., 2020). 

To derive properly a reliable CDF from a given Kd dataset it is 
necessary that it contains a minimum number of entries (N ≈ 10). 
However, there were a few partial datasets containing less than 10 en
tries for which CDFs were evaluated. Those partial datasets that pro
vided a good fit to the lognormal distribution were reported and for the 
rest of the cases only GM values were calculated. 

3. Analyses of Cs Kd distributions 

3.1. Influence of the experimental approach on Cs Kd data 

The overall Cs Kd dataset contained Kd data gathered by applying 
sorption experiments in a short-term scenario (ST-S), and desorption 
experiments in a long-term scenario (LT-D). When the statistical analysis 
was performed after applying the GMC to the partial datasets created 

from the application of the OM + Texture criterion, significant differ
ences were observed between ST-S and LT-D (data not shown). Thus, 
short-term and long-term Cs Kd data must be distinguished before testing 
any further grouping criteria, which agrees with the fact that long-term 
incorporated Cs may undergo an aging process leading to an increase in 
the Cs sorption irreversibility. 

Fig. 1 shows the Cs Kd descriptors of the distributions of the short- 
term and long-term partial datasets from the overall dataset, as well as 
the related CDFs. The Cs Kd data and CDFs for the long-term incorpo
rated Cs (GM and 5th – 95th percentile range values) were an order of 
magnitude or more greater than those of short-term. An implication of 
this finding is that the use of long-term Cs Kd data should be avoided to 
predict soil Cs sorption behaviour in recently contamination systems, 
and vice versa, values from short-term measurements of Cs Kd should be 
avoided to predict long-term Cs sorption behaviour. 

3.2. Cs Kd best estimates and CDFs based on the RIP/Kss criterion 

Of the 769 entries in the Cs Kd dataset, 328 contained sufficient 
ancillary information for calculating the RIP/Kss. The log-log correlation 
between experimental Cs Kd and the respective RIP/Kss values could 

Fig. 1. CDFs and descriptors of Cs Kd (L kg− 1) distributions for soils grouped according to the Experimental Approach. Data for the Overall dataset are included for 
comparison. Points indicate individual dataset values whereas lines indicate the fitted distributions. 
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explain 64% of the total Cs Kd variance, representing a profound result 
considering the large variability of the dataset (see equation (3) and 
Fig. S1 in the Supplementary Material):   

In this context, the construction of the CDFs helps to describe the 
variability associated with the use of the RIP/Kss ratio, to propose Cs Kd 
best estimates derived from the use of the RIP/Kss criterion, and to 
quantify their uncertainty. 

Fig. 2 depicts the graphical representation of the CDFs constructed 
from each partial dataset created by applying the RIP/Kss criterion as 
well as the main quantitative outcomes from the CDF construction. The 
Cs Kd GMs and related 5th-95th percentile ranges increased when 
increasing each RIP/Kss group. Whereas the examination of the Cs Kd 
GM is of a lesser importance in this case (as an end-user with available 

RIP and Kss data can straightforwardly calculate an approximate, related 
Cs Kd value), the 5th-95th percentiles permit to quantify and describe 
the Cs Kd variability within each dataset. The variability in the partial 

datasets was only of one to two orders of magnitude. Besides, the con
structed CDFs curves did not overlap among them. Therefore, the 
calculation of the RIP/Kss ratios permits a rapid estimation of the Cs Kd, 
with an associated uncertainty calculated from the corresponding CDF. 

A major limitation of this approach lies on the fact that it is necessary 
to have the soil RIP value, a parameter that albeit being more and more 
frequently determined it is not yet characterised on routine analyses. 
Therefore, end-users may find useful an equation enabling the predic
tion of soil RIP values from soil properties often available or, at least, 
much easier to determine than the RIP parameter. Previous studies 
demonstrated that RIP values can be roughly predicted from soil clay 
and silt contents (Waegeneers et al., 1999; Gil-García et al., 2011). Here, 

Fig. 2. CDFs and descriptors of Cs Kd (L kg− 1) distributions for soils grouped according to RIP/Kss criterion. Points indicate individual dataset values whereas lines 
indicate the fitted distributions. 

logKd = 0.76 (±0.18) + 0.73 (±0.06) × log(RIP/Kss) (N = 328; r = 0.80; p = 2.6 × 10− 74)                                                                                       (3)  
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a multiple linear regression is created from data from the current 
compilation as well as from data from other works in which RIP was 
measured along with other soil properties (Vandebroek et al., 2012; 
Uematsu et al., 2015). The correlation captured around 70% of total RIP 
variability and reliably correlated RIP values of soils with their clay and 
silt contents:  

log RIP = 1.24 (0.09) + 0.76 (0.06) × log Clay + 0.68 (0.06) × log Silt (N =
225; r = 0.82; p = 1.4 × 10− 54)                                                        (4) 

This model could be improved if the 2:1 phyllosilicates content 
would be quantified (Nakao et al., 2015; Uematsu et al., 2015), although 
this information is expensive and not available in routine analyses. Thus, 
the development of an equation to predict RIP values not only from clay 
content but from clay mineralogy remains a future challenge. 

A secondary limitation of this approach is that the K concentration in 
the soil solution is not routinely analysed by researchers. However, there 
have been a few attempts to estimate this parameter from other soil 
properties, such as from exchangeable K and K Kd estimates reported for 
mineral and organic soils; from the total K content, the CEC in clay 
minerals and from the percentage of the exchange sites on soil clay 
minerals occupied by K. In the case of organic soils, the gravimetric 
humus content of the soil is also required as well as to distinguish be
tween CEC of humus and clay sites (Absalom et al., 2001; Gil-García 
et al., 2009). 

3.3. Cs Kd best estimates and CDFs based on the OM + Texture criterion 

3.3.1. Cs Kd best estimates and CDFs based on the initial OM + Texture 
criterion 

The Cs Kd dataset, refined to include those entries with the infor
mation required for the OM + Texture criterion, contained 573 entries, 
an additional 100 entries compared to the TRS-472 dataset (IAEA, 
2010). Table 1 summarises the Cs Kd data obtained from the CDFs 
constructed by applying the OM + Texture criterion, distinguishing 
between short- and long-term partial datasets, as well as by mineral and 
organic soils, and when statistically significant, textural classes within 
the mineral soils. 

With the short-term data, the GMs derived from the CDFs created 
with the short-term data evidenced that Cs Kd values for the Mineral 
dataset were statistically greater than that of the Organic dataset. Within 
the Mineral dataset, the Kd GMs increased along with the soil clay 
content (GMsand < GMloam < GMclay). However, and although kept 
separately in the table, Clay and Loam datasets were not significantly 

different. This pattern is generally consistent with reported Cs sorption 
mechanisms, Cs partitioning between FES and RES sites and the rela
tively weak sorption of Cs to natural OM sites (Rigol et al., 2002). For the 
long-term data, the GM derived for the Mineral group was also one order 
of magnitude higher than that of the Organic group, although no sta
tistical differences were observed among the textural groups among 
them and with respect to the Mineral dataset. 

The GM values (Table 1) derived from the Mineral soil group created 
from the short-term dataset was statistically lower than that of the long- 
term dataset (more than one order of magnitude) and the 5th-95th in
tervals of the long-term Mineral dataset were shifted to higher Cs Kd 
values, which corroborates the influence of the sorption dynamics on the 
Cs Kd values as observed in Section 3.1. Moreover, the same pattern was 
also observed for the Organic datasets, as the GM values of the Organic 
dataset in the long-term scenario was one order of magnitude higher 
than that of the short-term. This may indicate that the 20% OM content 
threshold to distinguish between mineral and organic soils regarding Cs 
interaction is too low for this radionuclide. This observation may be 
attributed to FES out competing the RES that account for Cs sorption to 
OM (Rigol et al., 1998; Roig et al., 2007). 

The comparison of the 5th-95th percentile ranges of Cs Kd values 
obtained from the OM + Texture partial datasets with that of the overall 
Cs Kd dataset indicates that the application of the OM + Texture crite
rion to short-term data allowed us to create Cs Kd mineral textural 
groups with a much lower variability (lower GSD and more narrow 
percentile ranges) than that of the overall data set (down to one-to-two 
orders of magnitude in a few cases) (Table 1). Conversely, organic soils 
datasets contained Cs Kd values still varying within ranges similar to 
those of overall short- and long-term datasets. Thus, these results suggest 
that the initial OM + Texture criterion could be improved by better 
establishing the OM% threshold for Cs to distinguish between mineral 
and organic soils. 

3.3.2. Cs Kd best estimates and CDFs based on the redefined OM + Texture 
criterion 

The effect of changing the OM thresholds to better distinguish be
tween mineral from organic soils were tested for short- and long-term 
partial Cs Kd datasets. Criteria to select the new OM thresholds were 
based on 1) to analyse significant changes in the derived Cs Kd GMs; 2) to 
obtain organic and mineral soil distributions with enough entries and 
minimum variability; and 3) to obtain similar Cs Kd best estimates for 
short- and long-term organic soil datasets. 

A few entries were excluded if the OM content was not reported. As 
summarized in Table S1 in the Supplementary Material, the GMs of the 
Mineral datasets were statistically the same regardless the OM 
threshold, whereas the GMs from the Organic datasets progressively 
decreased by increasing the OM threshold up to 50%, and remained 
statistically constant for the 60% OM threshold. Besides this, the vari
ability of the Mineral datasets was roughly the same for all the OM 
thresholds tested, whereas variability decreased significantly for the 
Organic datasets when increasing the OM threshold up to 50%, with no 
further improvement for the 60% threshold. Therefore, a 50% OM 
threshold is suggested for short-term datasets. 

Regarding long-term data, data limitation required that we evaluate 
greater threshold values, up to 90%. The GM Cs Kd and related vari
ability of the Mineral datasets remained constant regardless the OM 
threshold, whereas for the Organic datasets GMs and related variability 
were gradually decreased as the OM threshold value was increased. The 
decrease was statistically significant when the 90% OM threshold was 
applied. From these results, it is suggested a 90% OM content as a 
threshold to distinguish between organic and mineral soils for long-term 
data. 

The third criterion for establishing the new thresholds was only 
partially achieved. Whereas the GM of the organic short-term and long- 
term datasets approached with the new thresholds (from one-order of 
magnitude difference to a lower 4 fold), the datasets were still 

Table 1 
Descriptors of Cs Kd (L kg− 1) distributions after applying the initial OM +
Texture criterion.  

Partial dataset N GM GSD FLSDa 5th 95th 

Short-term 
Overall 405 2.2✕103 5.7 A1 5.2✕101 2.2✕104 

Organic 60 1.8✕102 6.1 B1 2.0✕101 4.1✕103 

Mineral 345 2.7✕103 4.3 C1 1.3✕102 2.4✕104 

Clay 32 5.9✕103 3.4 A2 6.8✕102 3.5✕104 

Loam 190 3.7✕103 3.2 A2 5.9✕102 2.6✕104 

Sand 110 1.3✕103 5.0 B2 5.6✕101 1.0✕104  

Long-term 
Overall 168 2.4✕104 4.2 A3 1.6✕103 1.5✕105 

Organic 20 2.0✕103 7.4 B3 1.1✕102 9.2✕104 

Mineral 148 2.8✕104 2.6 C3 6.8✕103 1.5✕105 

N = number of observations, GM = geometric mean, GSD = geometric standard 
deviation. 
a Different letters among the datasets compared indicate statistically significant 
differences between GMs according to the Fisher’s Least Significant Differences 
test. Dataset comparisons shown here are: 1 short-term overall, mineral, and 
organic datasets; 2 short-term textural datasets; 3 long-term overall, mineral, and 
organic datasets. 
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Fig. 3. CDFs and descriptors of Cs Kd (L kg− 1) distributions derived from the redefined OM + Texture criterion for short-term (A) and long-term (B) partial datasets. 
Points indicate individual dataset values whereas lines indicate the fitted distributions. 
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statistically different at 95% confidence level, although with a p value of 
0.043. Therefore, the two datasets could be considered as comparable. 
However, greater organic datasets according to the redefined thresholds 
with more entries (especially for the long-term scenario) are needed to 
be able to statistically fulfil this criterion. If an overall short-term plus 
long-term organic dataset is built up with the redefined OM thresholds, 
with 45 entries, a best-estimate of 1.1✕102 L kg− 1 (GSD = 4.2) can be 
derived from the overall organic dataset. 

Fig. 3 summarises the Cs Kd data obtained from the CDFs constructed 
by applying the redefined OM + Texture criteria to the short-term and 
long-term partial datasets and the CDF graphical representations. The 
changes introduced concerning the OM thresholds resulted in partial 
datasets with much lower variability than when using the initial OM +
Texture criterion. The derived Cs Kd GM values increased with 
increasing clay content leading to well-defined CDFs among textural 
groups, also for the long-term datasets. Besides, for a given textural soil 
group, the long-term Cs Kd data were systematically much higher 
(around one order of magnitude) than those corresponding to the short- 
term data. 

4. Conclusions and recommendations 

From the analyses performed to the Cs Kd dataset, it was found that 
sorption dynamics effects (i.e., long-term vs. short-term scenarios) had a 
strong impact on the Cs Kd values and related variability. This fact 
should be taken into consideration when dealing with risk assessment 
exercises in which Cs Kd data are required. Besides, it was also evidenced 
that soil properties either directly related to the mechanisms governing 
Cs sorption in soils, like soil RIP and K concentration in soil solution, or 
indirectly related, such as the soil OM and to a lesser extent the soil 
texture, dramatically affected the Cs Kd values and their variability. 
These soil properties should be available for a proper estimation and 
selection of Cs Kd. 

A single Cs Kd best estimate and/or CDF has little practical value for 
modelling because it is fraught with high variability and it is not assured 
that it is representative of the target scenario. Alternatively, it is highly 
recommended to end-users to select the Cs Kd best estimates and CDF 
that corresponds to their scenario of interest. First, it is crucial to identify 
if the assessment is made for a recent contamination episode such as 
right after a radioactive accidental release (short-term scenario, < ~1 
yr) or for a post-contamination episode that occurred a long time ago or 
for predictions extended to the future (e.g., in the context of safety and 
performance assessment of deep geological repositories or long-term 
impact assessment of contamination episodes). If the radiological 
assessment exercise is done for a short-term scenario and the RIP and Kss 
data are available for the studied soil, it is recommended to use a Cs Kd 
value based on the direct calculation of the RIP/Kss ratio, associated with 
the uncertainty derived from the constructed CDF for the corresponding 
RIP/Kss group, in which, if required, RIP can be predicted directly from 
the clay and silt contents of the soil. Kss could also be derived from other 
soil properties, such as total K, and CEC of clay and humus fractions. 
Both from short- and long-term scenarios, if soil organic matter content 
of the target soil is known, it is suggested to use the CDF that also suits 
the soil type (Organic or Mineral), whereas if soil texture data is also 
available it is suggested to refine the CDF election also according to the 
textural group. 
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